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Abstract. Using the Hamiltonian formulation for composite fermions developed recently, the
temperature dependence of the spin polarization is computed for the translationally invariant
fractional quantum Hall states at ν = 1/3 and ν = 2/5 in two steps. In the first step, the effect of
particle–hole excitations on the spin polarization is computed in a composite-fermion Hartree–Fock
approximation. The computed magnetization for ν = 1/3 lies above the experimental results for
intermediate temperatures indicating the importance of long-wavelength spin fluctuations which
are not correctly treated in the Hartree–Fock approximation. In the second step, spin fluctuations
beyond the Hartree–Fock approximation are included for ν = 1/3 by mapping the problem onto the
coarse-grained continuum quantum ferromagnet. The parameters of the description in terms of the
effective continuum quantum ferromagnet are extracted from the preceding Hartree–Fock analysis.
After the inclusion of spin fluctuations in a large-N approach, the results for the finite-temperature
spin polarization are in quite good agreement with the experiments.

1. Introduction

The fractional quantum Hall (FQH) effect [1] has introduced us to new, highly correlated,
incompressible states [2] of electrons in high magnetic fields. A unified understanding of all
fractions ν = p/(2sp+1) was achieved by the composite-fermion picture of Jain [3], in which
the electrons are dressed by 2s units of statistical flux to form composite fermions (CFs). At
a mean-field level, the CFs ‘see’ a reduced field B∗ = B/(2sp + 1), in which they fill p CF
Landau levels (CF-LLs), and exhibit the integer quantum Hall effect.

Due to the small g-factor of electrons in GaAs, spins may not be fully polarized in
FQH states [4, 5]. Transitions between singlet, partially polarized, and fully polarized states
(based on gap measurements) have been observed for a number of fillings [6–9], which can be
understood in terms of CFs with a spin [3,9,10]. The transitions happen when an unoccupied
CF-LL of one spin crosses the occupied CF-LL of the opposite spin.

While these low-temperature measurements are in satisfactory agreement with the ground
states predicted in the CF picture [10], in order to understand the temperature dependence of
the polarization P(T ) one has to consider all excited states as well. Detailed measurements
of P(T ) for the ν = 1/3 state have recently appeared in the literature [11, 12]. It is well
known that the ν = 1/3 state is spontaneously polarized at T = 0, even when the Zeeman
coupling EZ = gµBtot is zero. In this it is analogous to the ν = 1 state [13], which has
been extensively studied theoretically [14–16] and experimentally [17]. There are, however,
significant differences between the two cases at finite T .
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In a recent paper, MacDonald and Palacios [18] identified a key qualitative feature that
makes ν = 1/3 very different from ν = 1. In the ν = 1 case the particle–hole excitations are
very high in energy compared to EZ , and are frozen out at all low temperatures of interest.
Consequently, the T -dependence of P comes mainly from spin-wave excitations and their
interactions. This is why long-wavelength effective theories such as the continuum quantum
ferromagnet [14] approach are successful. However, for ν = 1/3, particle–hole excitations
are on the same scale of energy as EZ , and cannot be ignored at any T . MacDonald and
Palacios use a simplified model to illustrate this feature [18], but the model is not sufficiently
detailed to enable a calculation of P(T ) for a realistic sample, and is difficult to extend to
non-Laughlin fractions.

The goal of this paper is to describe a general analytical method for approximately
computing P(T ) for an arbitrary principal fraction for realistic samples. To this end, an
approximate Hamiltonian formalism in which composite-fermion variables explicitly appear
will be used [19]. This Hamiltonian approach is based on the field theoretic idea of attaching
flux to electrons by using a Chern–Simons field [20–26]. The CF Hamiltonian approach has
many features suited to the computation of the physical properties of fractional Hall systems.
The CFs ‘see’ the effective field, and fill CF Landau levels (CF-LLs). For the principal fractions
ν = p/(2p + 1) with which we will be concerned, the effective field is B∗ = B/(2p + 1), and
the CFs fill p CF-LLs. The energies of the CF-LLs are controlled entirely by interactions [19],
which is a correct feature of the physics of electrons in the lowest Landau level. Note that
this is not a theory in which composite fermions are free. On the contrary, the theory is
fully interacting, with both the kinetic energies and the residual interactions of the CFs being
controlled by the electron–electron interaction. Finally, the nonperturbative charge and dipole
moment of the excitations appear explicitly in the theory [19]. The fact that all of these
nontrivial features are built into the theory raises the expectation that very simple approximate
treatments of this Hamiltonian theory (such as the Hartree–Fock one) will suffice to produce
reasonable numbers for physical quantities. This expectation is indeed borne out by explicit
calculations [27–29]. The Hamiltonian formalism will be presented briefly in section 2.

The Hamiltonian approach is particularly suited to the computation of finite-temperature
properties in fractional Hall systems. In the composite-fermion Hartree–Fock (CFHF) approx-
imation, one self-consistently finds the single-particle energies and occupations of the various
CF-LLs at any finite temperature. Since the energies of the states are controlled entirely by
interactions and occupations, these energies will be temperature dependent. This is a familiar
feature in other interacting many-body systems, such as the BCS superconductor, where the
single-particle gap is a collective effect, and depends on temperature. Thus the Hamiltonian
theory gives us valuable information on the evolution of the collective state as a function of
temperature, which is then used in the mapping to the effective theory. Once the occupations
of the single-particle CF-LLs have been determined, the polarization is computed simply as
the difference of the total ↑-spin and ↓-spin occupations. This yields the CFHF prediction
for the temperature dependence of the spin magnetization. This procedure and the results for
ν = 1/3 and ν = 2/5 are described in section 3. A brief description of this work has appeared
previously [30].

It turns out that for the spontaneously polarized ν = 1/3 state the CFHF prediction is higher
than the experimental values for all temperatures, with the discrepancy being considerable for
intermediate temperatures, as shown in figure 1. To put it in the proper context, the agreement
between the CFHF prediction and experiment is considerably better than for ν = 1, where the
HF approximation does a very poor job of predicting the spin polarization [15].

However, the discrepancy is nonetheless there, and is presumably the result of spin
fluctuations which are not treated correctly in the CFHF approximation. One can imagine
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Figure 1. Polarization versus T for ν = 1/3. The circles are the data for the 10W sample of
Khandelwal et al [11]. The dashed line is the prediction from the CFHF theory for a thickness
parameter of λ = 1.5l. The solid and dot–dashed lines refer to the theoretical prediction including
spin fluctuations.

integrating out the fermions to obtain an effective theory that has low-energy spin degrees
of freedom. One is then led to map the low-energy physics onto the continuum quantum
ferromagnet (CQFM) [14]. The CQFM has two free parameters, the magnetization per unit
volume M0, and the spin stiffness ρs . In the traditional CQFM theory these are temperature-
independent parameters. However, since the theory is fermionic at the microscopic level,
with the fermionic energy levels and occupations being temperature dependent, one should
expect M0 and ρs to acquire a T -dependence in the effective theory. It turns out that these
parameters can be easily extracted from the CFHF treatment of section 3. Armed with this
information, we proceed to include spin fluctuations in a large-N approach as described by
Read and Sachdev [14]. The results are in quite good agreement with the experimental
data over the whole range of temperature, as shown in figure 1 for the 10W sample of
Khandelwal et al [11]. The same comparison is shown for the data of Melinte et al [12]
in figure 2.

The details of the figures will be explained in sections 3 and 4. The mapping to the
effective theory and the subsequent calculations are described in section 4. We end with some
conclusions, caveats, and open questions.

2. Hamiltonian formalism

Since detailed descriptions of the Hamiltonian theory of CFs have appeared elsewhere [19],
we will restrict ourselves to a summary of the essential features of this formalism.
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Figure 2. The theoretical prediction in the CFHF approximation (dashed line) and including spin
fluctuations (solid and dot–dashed lines) compared to the Knight shift data for the M242 sample
of Melinte et al [12]. A saturation value of 19 kHz for the Knight shift has been used, and the
thickness parameter is assumed to be λ = 1.5l.

The composite-fermion picture was originally used by Jain [3] to generate electronic
wave functions with good correlations. These wave functions have excellent overlap with the
exact wave functions for finite systems, and encode all the right physics. In order to compute
dynamical response functions, it is desirable to have an operator or field theoretic formulation
of CFs. The fundamental property that CFs carry statistical flux can be implemented by a
Chern–Simons (CS) transformation, which performs flux attachment via the CS gauge field
to obtain a field theoretic description with either bosons [20–23] or fermions [24]. These
theories have provided us with a link between the microscopic formulation of the problem and
experiment, both for incompressible and compressible states [25, 26].

Recently R Shankar and the present author developed a Hamiltonian CS theory for the
fractional quantum Hall states [19]. Inspired by the work of Bohm and Pines [31] on the
3D electron gas, we enlarged the Hilbert space to introduce n high-energy magnetoplasmons
degrees of freedom (n also being the number of electrons), at the same time imposing an
equal number of constraints on physical states. However, the fermions still had the bare
mass (recall that in the lowest Landau level, the electrons should lose all memory of the
bare mass, and acquire an effective mass controlled by interactions), and the frequency of the
magnetoplasmons was incorrect. Hence a final canonical transformation was employed to
decouple the fermions from the oscillators in the infrared limit.

The final fermions are called the composite fermions for the following reasons. Firstly,
the final fermions have no dispersion in the absence of interactions and acquire an effective
mass dependent on interactions alone. Next, the final canonical transformation assigns to each
fermion the magnetic moment e/2m as mandated by very general arguments [32, 33]. The
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central result of the formalism is the formula for the electronic charge density, which takes the
following form, separable into high- and low-energy pieces [19], at small q:

ρe(q) = q√
8π

√
2p

2p + 1
(A(q) + A†(−q))

+

(∑
j

e−iqxj

)/
(2p + 1) − il2

(∑
j

(q × �j)e
−iqxj

)
(1)

where A,A† refer to the annihilation and creation operators of the magnetoplasmon oscillators,
l = 1/

√
eB is the magnetic length, and ��j = �Pj + e �A∗(rj ) is the velocity operator of the

CFs. The oscillator piece saturates Kohn’s theorem [35]. The rest, to be called ρ̄, is obtained
by adding to the canonically transformed electronic charge density a particular multiple of the
constraint [19] (in the physical subspace, one can add any multiple of the constraint without
physical consequences, but we wish to work in the full space). It has some very useful properties
in the full space:

• ρ̄ satisfies the magnetic translation algebra (MTA) [36] to lowest leading order. Since this
is the algebra of the electron density in the lowest Landau level (LLL), the LLL projection
has been correctly carried out in the infrared.

• Note that ρ̄ is a sum of a monopole with charge e∗ = e/(2p + 1), which is the charge
associated with the CF, and a dipole piece which alone survives at ν = 1/2 and has the
value proposed by Read [34]. (A number of recent constructions have emphasized this
dipolar aspect [37–40].)

• We also find that as �q → 0 all transition matrix elements of ρ̄ from the HF ground state
vanish at least as q2.

The final property is an essential property of physical charge-density matrix elements from
incompressible liquid ground states in the LLL [36]. It is easy to see that if one intends to
use the Hartree–Fock approximation ignoring constraints, these properties of ρ̄ are essential.
They make it plausible that ρ̄ does not suffer vertex corrections.

The Hamiltonian of the low-energy sector (dropping the magnetic moment term) is

H = 1

2

∫
d2q

(2π)2
v(q)ρ̄(−q)ρ̄(q). (2)

where v(q) is the electron–electron interaction. Real samples have a finite thickness # of the
same order as l, so the Coulomb interaction is cut-off at large wave vectors [41]. We will
model this interaction by [42]

v(q) = 2πe2

q
exp −λq. (3)

Finally, the constraint will be approximately implemented by cutting off the number of
CF-LLs to maintain the correct number of electronic states. For ν = p/(2p + 1) this means
keeping 2p + 1 CF-LLs. More details of the formalism can be found in references [19, 29].

3. The composite-fermion Hartree–Fock approximation

The CFHF approximation has been applied to the above Hamiltonian, and reasonable success
has been obtained in computing various physical quantities in the gapped fractions [27–29],
including a very recent calculation of the temperature-dependent polarization P(T ) for the
compressible half-filled LL [43].
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Before one employs the CFHF approximation, one needs to express the Hamiltonian as
an operator acting on a set of states. Since the CFs ‘see’ the effective field B∗, it is natural to
represent the Hilbert space as Slater determinants of single-particle CF Landau level states in
the effective field. The wave functions of these states in the Landau gauge are

φn,X(�r) = 1√
L

eiXy/(l∗)2
φn((x − X)/l∗) (4)

Here l∗ = l
√

2p + 1 is the effective magnetic length, L is the linear dimension of the system,
X = 2π(l∗)2j/L is the degeneracy index, where j = 0, 1, . . . , L2/(2π(l∗)2), and φn is the
nth normalized harmonic oscillator eigenfunction. The index n is the CF-LL index.

The density is a one-body operator, and can be expressed in this basis (after the spin labels
have been included) as

ˆ̄ρ(�q) =
∑

σ,X{ni }
e−iqxXρn1n2(�q)d†

σ,n1,X−qy(l∗)2/2dσ,n2,X+qy(l∗)2/2 (5)

where σ = ↑,↓ is the spin index, and dσ,n,X destroys a CF in the single-particle state labelled
by σ, n,X, and ρn1n2(�q) is a matrix element given by

ρn1n2(�q) = (−1)n<+n2

2p + 1

√
n<!

n>!
ei(θq−π/2)(n1−n2)

(
ql∗√

2

)n>−n<

× e−y/2(n>L
n>−n<

n<−1 + 2Ln>−n<

n<
− (n< + 1)Ln>−n<

n<+1 ) (6)

where n< (n>) is the lesser (greater) of n1, n2, θq is the angle of the vector �q measured from
the x-axis, y = (ql∗)2/2 is the argument of the Laguerre polynomials Lk

n.
The Hamiltonian is now a four-fermion operator. It can easily be shown that the single-

particle states defined above form a good HF basis [29]. In the CFHF approximation, one
reduces the four-fermion Hamiltonian to a two-fermion operator by taking averages according
to the rules

〈GS|d†
ν dν ′ |GS〉 = δνν ′NF (ν) (7)

〈GS|dνd
†
ν ′ |GS〉 = δνν ′(1 − NF (ν)) (8)

where ν is a shorthand for all the state labels. This results in the HF Hamiltonian

HHF =
∑
σ,n,X

ε(σ, n)d
†
σ,n,Xdσ,n,X (9)

where the HF single-particle energy is

ε(σ, n) = ±EZ

2
+

1

2

∫
d2q

(2π)2
v(q)

∑
m

(1 − 2NF (σ,m))|ρnm(q)|2 (10)

in which the Zeeman energy has been added (EZ = g∗µBB).
Finding the energies at T = 0 is quite simple, since the occupations of the CF-LLs can

only be 0 or 1. For example, for the ν = 1/3 state, NF (↑, 0) = 1 and all other occupations are
zero, and for the ν = 2/5 singlet state, NF (↑, 0) = NF (↓, 0) = 1, and all other occupations
are zero. For nonzero T one has to carry out a self-consistent procedure. First one chooses
trial values for the energies (say the T = 0 values) and a trial value for the chemical potential µ
(say halfway between the lowest unoccupied and highest occupied CF-LL). Then one assigns
the occupations of the single-particle levels according to Fermi occupation function

NF (σ, n) = 1

1 + exp(ε(σ, n) − µ)/T
(11)
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with the trial value of µ. Then one recomputes the HF energies using equation (10). Note
that the structure of degenerate CF-LLs remains intact, and only the energies and occupations
change. Since the filling has to remain fixed, the chemical potential will change when the
energies change. One then recomputes the chemical potential as the root of the equation∑

n

(NF (↑, n) + NF (↓, n)) = p (12)

for the principal fraction p/(2p + 1) and iterates the whole process until self-consistency is
achieved. Finally, the spin polarization is given by

P =
∑
n

(NF (↑, n) − NF (↓, n))/p. (13)

From the above procedure it is clear that only single-particle excitations have been taken
into account in obtaining P(T ) so far, and spin fluctuations have been explicitly ignored. If it
so happens that for the system under consideration the effects of spin fluctuations are small,
then this approximation should be accurate, otherwise not.

Let us proceed to compare the CFHF results to experiments. We first consider the 10W
sample of Khandelwal et al [11]. The sample parameters are B⊥ = 9.61 T, and Btot = 12 T.
This implies that the Coulomb energy scale is EC = e2/εl ≈ 160 K and the Zeeman energy is
EZ = 0.0175EC . We will use a value of λ = 1.5l for the thickness parameter for illustrative
purposes throughout this paper. This value ought to be in the physical regime [44] for most
samples, and also approximately agrees with that extracted from an analysis of the compressible
states [43]. It should be emphasized that the CFHF analysis, and the mapping to the effective
spin theory that follows, can be performed for any potential v(q).

Figure 1 (in the introduction) shows the HF prediction from our theory for λ = 1.5l
compared to the experimental data. The agreement is good at very low (T � 1 K) and
very high (T � 8 K) temperatures. However, at intermediate T , there is a big discrepancy
between the CFHF prediction and the data. This indicates that effects not treated correctly
in the HF approximation, notably long-wavelength thermal spin fluctuations, are important in
this intermediate regime of T . Nonetheless, to put the result in context, one should note that
the CFHF prediction agrees much better with the data than the corresponding HF prediction
for ν = 1 (see, for example, reference [15] for a comparison of the different predictions for
ν = 1). This is because at ν = 1 particle–hole excitations are completely unimportant at all
temperatures of interest, while thermal spin fluctuations dominate. Since long-wavelength spin
fluctuations are treated very poorly in the HF approximation the agreement is bad. However,
at ν = 1/3, particle–hole excitations play a major role in reducing P(T ) for T > 5 K. In the
next section we will see how to incorporate spin fluctuations into our calculation, resulting in
much better agreement with the data.

Figure 3 shows the same type of comparison for the Knight shift data of Melinte et al [12]
for their M242 sample. Here the sample parameters are Btot = B⊥ = 17 T. This implies
that EC ≈ 210 K, EZ = 0.0186EC ≈ 4 K. Once again a value of λ = 1.5l has been used
in the CFHF calculation. In order to translate the Knight shifts into polarization numbers or
vice versa, one needs to determine the saturation value of the Knight shift, which presumably
corresponds to a polarization of P = 1. There is a lot of scatter in the data at low T , due to
the very long times needed to measure the Knight shift, and the error bars are also large at
low T [12]. There is thus some uncertainty in determining the Knight shift corresponding to
P = 1. In any reasonable theory one expects to find that P = 1 for T � EZ , and expects to
see this saturated value of P up to about T = 0.5EZ or so.

On the basis of these considerations two values of the saturation Knight shift Ks,P=1,
21 kHz and 19 kHz, have been used to fit the data here, both of which lie within the error bars
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Figure 3. Knight shift versus T for ν = 1/3. The circles are the data for the M242 sample of
Melinte et al [12]. The lines are the predictions from the CFHF theory for λ = 1.5l, assuming two
different values for the Knight shift that corresponds to saturated polarization.

of the low-T data [12]. One possibility that can explain this spread is that spin-reversed
quasiparticles are present in the ground state due to disorder, which can bring down the
‘saturated’ value of the Knight shift [45]. The 21 kHz value was used by Melinte et al in
a phenomenological tanh(5/4kBT ) fit to obtain 5 = 1.7EZ . However, one must note that the
fit for Ks,P=1 = 19 kHz seems slightly better, since then the experimental saturation region is
about 0.5EZ . The agreement between theory and experiment for this value of Ks,P=1 is also
better than for Ks,P=1 = 21 kHz. The 19 kHz value will be used in the mapping to the effective
theory in the next section. Overall the agreement is slightly worse than for the Khandelwal
et al data [11], but leads to the same conclusion: it is quite important to treat thermal spin
fluctuations correctly at intermediate temperatures for ν = 1/3.

Before we proceed to approximately incorporate spin fluctuations into the theoretical
prediction, let us address the following interesting question: why is the HF approximation so
good in this case relative to the case of ν = 1? To answer this question let us turn to the
spin-wave dispersions. The spin wave is a collective spin-flip excitation, and at wave vector
�q corresponds a plane-wave state in which a majority-spin quasihole and a minority-spin
quasiparticle are at a separation of q(l∗)2.

The q → 0 limit is required to be EZ by Larmor’s theorem, while in the q → ∞ limit
the particle and hole become infinitely separated, so the energy of the excitation is the spin-
reversed particle–hole gap 5SR . The dispersion of these excitations can be computed for
ν = 1/3 in the manner described in reference [29], and is shown in figure 4 for λ = 1.5l for
EZ = 0.0175EC and T = 0. Figure 4 explicitly illustrates the feature [18] that the spin-flip
particle–hole excitations are at the same energy scale as EZ .
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Figure 4. Spin-wave energy dispersions in units of the Coulomb energy EC for EZ = 0.0175 and
λ = 1.5l, with q plotted in units of l−1. As can be seen, the scale of the spin-reversed gap is the
same as EZ .

How does this evolve as temperature increases? Recall that all the energy splittings in
the CF Hamiltonian formalism come from interactions, and as the occupations of the states
change with T so do their HF energies. As T increases, the occupations of the minority-spin
levels increase while that of the lowest majority-spin level decreases. This means that the
exchange splitting between the minority- and majority-spin levels decreases, as can be seen
from equation (10). It is clear that as T becomes very large the occupations of all the levels
should tend to become the same, and therefore 5SR should tend towards EZ . Since the spin-
wave dispersion has to be EZ for very small q, and 5SR for very large q, this implies that
the spin-wave dispersion becomes increasingly flat at T increases. We will estimate the spin
stiffness in the next section and corroborate this conclusion. Figure 5 shows this behaviour of
5SR explicitly for the same parameters as in figure 4.

Now consider a noninteracting theory of CFs. This would have a completely flat disp-
ersion for the collective mode, that is, ω(q) = EZ . Therefore, as the temperature increases,
the theory appears to be more weakly interacting, and the CFHF approximation becomes more
accurate. This trend can be expected to continue until a temperature scale is reached where
CFs cease to exist. There are no obvious signs of such a scale in the data.

One qualitatively incorrect feature of the HF approximation in general [15], which is
shared by the CFHF approximation used here, is that it predicts a magnetically ordered state
for nonzero T , and a finite-temperature phase transition, even in the absence of any Zeeman
coupling. The CFHF predictions for EZ = 0 and three values of λ are shown in figure 6.
This failure of the CFHF approximation highlights the need for a proper treatment of spin
fluctuations.

The CF Hamiltonian theory and the CFHF approximation are very general, and can be
applied to any fractional Hall state (for an application to compressible states see reference
[42]). To illustrate this figure 7 shows the P(T ) curves for ν = 2/5 for λ = 1.5l for a range of
Zeeman couplings. Note the nonmonotonicity of the curves that start from the singlet ground
state at T = 0. There is a transition to the fully polarized state around EZ = 0.01EC .
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Figure 5. Spin-reversed gap 5SR in units of EC as a function of T . The dashed line is EZ . Beyond
about 6 K, 5SR is essentially the same as EZ .
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Figure 6. Polarization versus T for ν = 1/3 for three different values of λ for EZ = 0. T is
plotted in units of the Coulomb interaction EC .

Note also that only results for translationally invariant HF states are presented, which
ignores possible partially polarized inhomogeneous states that have recently been proposed [46]
to explain intriguing observations by Kukushkin et al [47] of a state with half the maximal
polarization for ν = 2/5, which is not allowed as a translationally invariant CF state at T = 0.

Let us compare our results to the only other method that can compute P(T ) for arbitrary
fractions, which is exact diagonalization (keeping all the excited states) and subsequent calc-
ulation of thermodynamic quantities [48]. Due to computational limitations, this method is
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Figure 7. Polarization versus T for ν = 2/5 and λ = 1.5l, for a range of values of EZ . EZ and T

are both plotted in units of EC .

restricted to fairly small systems. For example, the largest system studied by Chakraborty
and Pietilainen [48] for ν = 1/3 has five electrons, and for ν = 2/5 has four electrons. For
ν = 1/3 the exact-diagonalization result lies above our CFHF predictions (and the experiment)
for T > 8 K. This discrepancy might be the result of finite-thickness and/or finite-size corr-
ections. However, at low T the exact-diagonalization result [48] follows the data more closely
than our HF approximation (in all of the above comparisons the g = 0.5 line in figure 1 of
reference [48] has been used and compared to the 10W sample of Khandelwal et al [11]; this
sample has the closest parameters to those used in reference [48]). For ν = 2/5, the CFHF
results reproduce the nonmonotonicity of P(T ) for those values of EZ where the singlet state
is the ground state, and the peaks in P(T ) occur at roughly the same T in the CFHF results and
the exact-diagonalization results [48]. However, the same overall pattern holds for ν = 2/5,
namely, the results of Chakraborty and Pietilainen [48] are below the CFHF prediction for
low T , but are higher for T > 0.02EC , where they once again see a 1/T tail with a large
coefficient. It would be interesting to explore the finite-size systematics to see if the large-T
tail is suppressed for larger sizes.

4. Spin fluctuations: mapping to the continuum quantum ferromagnet

As can be seen in figures 1 and 2, spin fluctuations are quite important for ν = 1/3 at
intermediate temperatures. Also, as seen in figure 6, the HF approximation has an incorrect
qualitative feature, in that it predicts a magnetized state at nonzero T even in the absence of a
Zeeman coupling, which also points to the need to include spin fluctuations. For ν = 1, the
coarse-grained effective theory of the continuum quantum ferromagnet (CQFM) coupled with
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the large-N approximation, first applied to this problem by Read and Sachdev [14], has been
quite successful in explaining the temperature dependence of the polarization. In this section
a method is presented to map the ν = 1/3 problem to the CQFM.

In the CQFM description one starts with the action [14]

S =
∫

ddx

∫ 1/T

0
dτ

(
iM0 �A(�n) · ∇τ �n +

ρs

2
(∇x �n)2 − M0 �H · �n + · · ·

)
(14)

where �n is a local vector of unit length pointing in the direction of the magnetization, �A(�n) is
the field that implements the Berry’s phase needed to obtain the correct quantum commutation
relations between the spin components, and �H = g∗µB

�B is the Zeeman field (| �H | = EZ).
The two crucial parameters which enter the action are M0, the magnetization density, and
ρs , the spin stiffness. There are other omitted terms in the action, which produce at most a
logarithmic correction to the magnetization in two dimensions [14]. There are various ways
in which one can proceed at this point [49], but the most convenient one for our purposes
involves mapping the spin problem to a problem with Schwinger bosons [50], and making
the large-N approximation [50]. There are two common ways of mapping the spin problem
to Schwinger bosons: the SU(N) approach and the O(N) approach [14], which give slightly
different answers.

In the following, we will restrict the theoretical results to the leading large-N approx-
imation, where the magnetization is given as M(T ) = M0:M(r, h), where r = ρs/T and
h = EZ/T are scaling variables, and :M is a scaling function. In this approximation, the
results of Read and Sachdev [14] for the magnetization in the SU(N) approach are

:M(r, h) = log(q1 − e−h/2) − log(q1 − eh/2)

8πr
(15)

and q1 > 1 is a root of the equation

(q1 − e−h/2)(q1 − eh/2) = q2
1 e−8πr . (16)

The corresponding results in the leading O(N) approximation [14] are

:M(r, h) = log(q2 − e−h) − log(q2 − eh)

4πr
(17)

where q2 > 1 is the solution of

(q2 − e−h)(q2 − 1)(q2 − eh) = q3
2 e−4πr . (18)

The principal assumption underlying the CQFM description is that long-wavelength
ferromagnetic spin fluctuations are the only low-energy modes that affect the spin polarization
in the temperature range of interest. In the regime where this assumption holds for the ν = 1/3
state, it should be possible to map the CF Hamiltonian theory to the CQFM. Conceptually, one
can think of ‘integrating out’ the fermions and leaving behind an effective theory of the spin
fluctuations. Operationally, one needs to find the values of M0 and ρs corresponding to the
ν = 1/3 state. An additional complication arises here: since the underlying fermionic theory
responds to temperature by self-consistently modifying occupations and energies, one should
expect to obtain temperature-dependent values M0(T ) and ρs(T ). We will extract these values
from the CFHF Hamiltonian results.

First consider M0(T ). We already have a value for the CFHF magnetization MHF (T ).
Let us first write down the correct relation between M0 and MHF and then justify it:

MHF (T ) = M0(T ):M(r = 0, h = 5SR/T ). (19)

In the CFHF theory the particles and holes are treated as independent, or noninteracting,
with a gap equal to 5SR (to be more precise, this is the lowest-energy spin-flip excitation). To
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put it differently, the energy gap required to create this spin-flip excitation is always 5SR , no
matter what the distance is between the particle and the corresponding hole. This is as though
the collective mode dispersion were completely flat, ω(q) = 5SR . The CQFM description
that corresponds most closely to the CFHF one is the one that has the same spin-flip excitation
spectrum, namely one with no spin stiffness, that is, r = 0, and an effective Zeeman field
E

eff

Z = 5SR . The CQFM prediction for the magnetization of such a theory is the right-hand
side of equation (19), which has to be equated to the CFHF prediction; hence the above formula,
equation (19).

Knowing that, for SU(N),

:M(0, h) = tanh(h/2) (20)

while, for O(N),

:M(0, h) = sinh(h)

1/2 + cosh(h)
(21)

one extracts M0(T ) from equation (19), using the value of MHF (T ) computed in section 3†.
Next consider the spin stiffness ρs(T ). At a given temperature T the self-consistent

occupations NF,GS(σ, n) and energies ε(σ, n) in the ground state are computed using the
procedure described in section 2. Now one creates a twisted spin state by defining

d↑,n,X = cos(qX/2)dα,n,X + sin(qX/2)dβ,n,X

d↑,n,X = cos(qX/2)dα,n,X + sin(qX/2)dβ,n,X

(22)

where α, β define local directions of up and down. In the twisted spin state the occupations
of the local up and down spins remain the same as in the ground state, that is

〈d†
α,n,Xdα,n′,X′ 〉 = δnn′δXX′NF,GS(↑, n)

〈d†
β,n,Xdβ,n′,X′ 〉 = δnn′δXX′NF,GS(↓, n)

〈d†
α,n,Xdβ,n′,X′ 〉 = 0.

(23)

This leads to the following expectation values for the actual (global) ↑ and ↓ spin
directions:

〈d†
↑,n,Xd↑,n′,X′ 〉 = δnn′δXX′(cos2(qX/2)NF,GS(↑, n) + sin2(qX/2)NF,GS(↓, n))

〈d†
↓,n,Xd↓,n′,X′ 〉 = δnn′δXX′(sin2(qX/2)NF,GS(↑, n) + cos2(qX/2)NF,GS(↓, n))

〈d†
↑,n,Xd↓,n′,X′ 〉 = δnn′δXX′ sin(qX/2) cos(qX/2)(NF,GS(↑, n) − NF,GS(↓, n))

〈d†
↓,n,Xd↑,n′,X′ 〉 = 〈d†

↑,n,Xd↓,n′,X′ 〉

(24)

and corresponds to a state where the unit vector �n pointing in the direction of the local
magnetization has components �n = (sin(qX), 0, cos(qX)). Using the expectation values
from equation (24), one can compute the HF energy of the twisted ground state, and thence
the excess energy to order q2. Comparing to the energy cost of a twist in the CQFM, which is
(ρs/2)L2q2, one finds the spin stiffness

ρs = 1

16π

∫
d2s

(2π)2
v(s)

∑
n1,n2

|ρn1n2(s)|2

× (NF (↑, n1) − NF (↓, n1))(NF (↑, n2) − NF (↓, n2)) (25)

† Note that neither of the above formulae agrees with the result for itinerant noninteracting electrons at ν = 1, namely,
:M = tanh(h/4). However, since we will be using the large-N forms with nonzero r later, we have to use the above
forms for consistency.
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where L2 is the area of the system, and ρn1n2 is the density matrix element of equation (6).
One caveat should be mentioned here: the above should be regarded as an estimate for the
twist rather than a rigorous calculation (even in the HF approximation), since ideally one
should compute the free-energy cost of a twist, rather than just the internal energy cost, as
we have done. The free-energy cost would be computed by carrying out a self-consistent HF
calculation at finite T in the presence of a twist. However, a fully relaxed HF calculation of
an inhomogeneous state at T �= 0 is computationally prohibitive. In the following we use the
value given by equation (25).

Figure 8 shows the results for M0(T ) and ρs(T ) for the parameters corresponding to the
Melinte et al M242 sample [12]. As can be seen, ρs in particular has a dramatic T -dependence,
and essentially vanishes for T > 6 K. This corroborates the earlier observation that the spin-
reversed gap collapses to EZ at around the same temperature, as seen in figure 4.
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Figure 8. The parameters M0(T ) (normalized to 1 at T = 0) for SU(N) (dashed line) and O(N)

(dot–dashed line), and ρs(T ) (×400 in units of EC ) extracted from the CFHF approximation for
EZ = 0.0186EC and λ = 1.5l. While M0 shows no dramatic behaviour, ρs decreases precipitously
beyond 3 K.

Having extracted the parameters M0(T ) and ρs(T ), it is now easy to calculate the effects
of spin fluctuations in the leading large-N approximation from equations (15), (17). Figure 1
(in the introduction) presents the results for the Khandelwal et al data [11]. As can be seen,
the agreement between the theory and experiment is now quite good, indicating that the proper
treatment of long-wavelength thermal spin fluctuations has remedied most of the defects of
the CFHF prediction. Turning to the M242 sample of Melinte et al [12], a similar dramatic
improvement in the agreement between theory and experiment is seen in figure 2 (in the
introduction). There are still some discrepancies in both the figures, but they never amount to
more than 10–15%. The agreement with exact diagonalizations [48] is now also excellent up to
about 6 K (comparing our results for the Khandelwal et al [11] 10W sample to the g = 0.5 line
in figure 1 of reference [48]). Beyond 6 K, our results drop below the exact-diagonalization
results and are a better fit to the experiments.

Note that we have set the thickness at λ = 1.5l. How do changes in λ affect the results?
As seen from the figures in the earlier short exposition of the CFHF approximation [30], the
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changes in the CFHF results are not dramatic: small changes in λ lead to small changes in the
results. Generically, as λ increases, the gaps, the spin stiffness, and the CFHF polarization (at
any given T ) all decrease smoothly [30]. However, once the fluctuation effects are folded in,
the results seem very insensitive to λ . For example, the results including spin fluctuations are
indistinguishable by eye for λ = 1.5 and λ = 1.75. Thus, while a value of λ = 1.5 has been
used for illustrative purposes, the results are very robust with respect to small changes in λ.

One might wonder how important it is to keep the temperature dependence of the
parameters M0 and ρs . Figure 9 shows the prediction of the large-N approach using the
values of M0 and ρs computed at T = 0 for the parameters corresponding to the Khandelwal
et al data [11]. This fit ignores finite-temperature single-particle excitations. It is clear that
while this prediction is somewhat better than the CFHF result for lower temperatures, it is
worse beyond 6 K. Also, this prediction is uniformly worse than the one including both CFHF
and spin-fluctuation effects.
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Figure 9. The theoretical prediction for the Khandelwal et al data [11] based on a zero-temperature
fit to the parameters of the CQFM. The thickness parameter is assumed to be λ = 1.5l. Circles
represent the experimental data [11].

Clearly, the reason is that this fit does not incorporate the finite-temperature fermionic
single-particle effects that renormalize the spin stiffness substantially downwards beyond about
3 K, as seen in figure 8. It must be concluded that the temperature dependence of the parameters
M0 and ρs is crucial, and that both single-particle and thermal spin-wave effects must be treated
correctly if one is to accurately predict the spin polarization.

5. Conclusions, caveats, and open questions

In summary, an approximate analytical method for computing the temperature dependence
of the polarization for an arbitrary fractional quantum Hall state has been presented, and
illustrated for ν = 1/3 and 2/5. It consists of two steps. The first step is constructing a
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finite-temperature composite-fermion Hartree–Fock approximation of the CF Hamiltonian.
This already incorporates important effects on the polarization resulting from particle–hole
excitations, and is sufficient to produce all the correct qualitative features, such as the
nonmonotonicity of the polarization for 2/5 [48]. For the spontaneously polarized 1/3
state, however, there is a substantial discrepancy between this prediction and experiment at
intermediate temperatures due to the incorrect treatment of spin fluctuations. The second
step, for the ν = 1/3 state, is to map the long-wavelength low-energy physics onto the
continuum quantum ferromagnet [14]. The parameters that enter the effective theory are
extracted from the CFHF approximation. Finally, the approximate solution for a continuum
quantum ferromagnet in the large-N approach [14] is used to produce a prediction for the spin
polarization which incorporates the effects of both single-particle and spin-wave excitations.
Note that the reduction of the spin polarization due to single-particle and spin-wave effects is not
additive in the two effects: the parameters M0 and ρs extracted from the CFHF approximation
encode information about single-particle excitations in a very nonlinear way. The resulting
prediction is in quite good agreement with experimental data, as seen in figures 1 and 2. The
comparison between theory and experiment was made using the model potential of equation
(3) for illustrative purposes, with a thickness parameter λ = 1.5l, which ought to be in the
physical regime for most samples [44]. However, the above two-step procedure of first carrying
out the CFHF approximation, and then mapping the problem onto the CQFM, can be executed
for any potential v(q).

A number of caveats must be noted at this point. In order for the mapping to the CQFM to
make sense, spin-wave excitations must be the only low-energy spin-flip excitations. However,
as T increases, other spin-flip excitations also become relevant (such as a collective excitation
from the ↑-spin n = 0 CF-LL to the ↓-spin n = 1 CF-LL). Another complicating issue is that
while the CQFM model assumes the spin-wave dispersion to be quadratic at all q, in reality it
turns over and becomes asymptotic at the spin-reversed gap 5SR . Both of these considerations
suggest that the mapping is to be trusted only in the regime where T � 5SR(T ). One can
verify from figure 5 that this corresponds to T � 6 K or so, which fortunately includes the most
interesting region of the data. It is somewhat puzzling that the prediction from the mapping
works well to twice this temperature. Finally, 1/N corrections can be expected to the leading
large-N prediction, which reduce the magnetization slightly beyond the leading large-N result
(see, for example, Timm et al [14]). These corrections would improve the agreement between
the theory and the data at low T .

An important open problem is the development of a formalism in which one can
systematically integrate out fermions, leaving behind a theory of the low-energy excitations,
perhaps along the lines of reference [15]. Such excitations need not be restricted to spin-wave
excitations, but may perhaps include other spin-flip modes or even density modes, depending
on the temperature and the system. Such a theory is necessary to address the effects of
thermal spin fluctuations on the temperature-dependent spin polarization of fractional Hall
states which are not fully polarized in the absence of a Zeeman coupling. The spin-flip modes
of such systems do not have the simple quadratic CQFM form even at small q (for example,
the spin-flip collective mode of the fully polarized 2/5 state starts with a negative quadratic
term [29]). A further interesting application would be to the interplay of spin and density
fluctuations in the compressible fractional Hall states [26, 43].
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